A ZVS PWM Half-Bridge Voltage Source Inverter With Active Clamping

Marcello Mezaroba, Denizar Cruz Martins, Member, IEEE, and Ivo Barbi, Senior Member, IEEE

Abstract—This paper presents a zero-voltage (pulsewidth modulation) half-bridge inverter with active voltage clamping using only a single auxiliary switch. The structure is particularly simple and robust. It is very attractive for single-phase high-power applications. Switching losses are reduced due to implementation of the simple active snubber circuit that provides zero-voltage-switching conditions for all switches, which includes the auxiliary one. Its main features are simple modulation strategy, robustness, low weight and volume, low harmonic distortion of the output current, and high efficiency. The principle of operation for steady-state conditions, mathematical analysis, and experimental results from a laboratory prototype are presented.

Index Terms—Active clamping, inverters, soft commutation.

I. INTRODUCTION

With the appearance of the bipolar transistors in the 1950s and the metal–oxide–semiconductor field-effect transistors in the 1980s, pulselength modulation (PWM) techniques could be used together with the increase of the commutation frequency, aiming to reduce the harmonic distortion of the output current at the output voltage waveform of inverters [1]–[6]. These measures lead to some benefits like the reduction of volume and weight of filters and magnetic elements; nevertheless, they cause some difficulties due to the high commutation losses in the switches, which reduce the efficiency of the converter, and the appearance of electromagnetic interference. These factors mainly occur in inverter topologies that use the bridge configuration, where the main switch is affected by the reverse recovery phenomenon of the antiparallel diode of the complementary switch. During this stage, the switches are submitted to a high current ramp rate (di/dt) and a high peak reverse recovery current i_r. Both significantly contribute to increasing the commutation losses and produce electromagnetic interference.

A great number of works have been realized by power electronics scientific community, with the aim to diminish these problems. They can be divided in two groups, which are: 1) passive techniques [7]–[13] and 2) active techniques [14]–[27]. The passive techniques are characterized by the absence of controlled switches in the auxiliary circuit, whereas the active techniques are characterized by circuits that use controlled switches.

Among the passive solutions, perhaps the most widely known is the Undeland snubber [7], which provides a good performance in the majority of its applications but is not capable of regenerating the energy of the switching process. To try to minimize the switching losses, some works have considered modifications in the Undeland snubber, which aim at the regeneration of the energy lost in the switching [8]–[13].

Among the active solutions, the main ones are those that use conventional PWM modulation without the need for special control circuits. One of these works is the auxiliary resonant diode pole inverter [14]. This topology matches the use of PWM modulation, with the soft switching attained through a relatively simple circuit. On the other hand, it needs a high current circulating in the circuit, about 2.5 times the load current, which raises the current stress in the switches. A topology very similar to the previous one is the auxiliary resonant pole inverter [15]. Theoretically, this circuit reduces the current levels that are necessary for switching; however, it involves a complex control strategy. Another circuit found in literature is the auxiliary resonant commutated pole inverter [16]–[18]. This inverter has auxiliary switches that are only turned on when the load current is not sufficient to realize the soft switching, which causes the control circuit to become very complex and dependent on the sensors. The works presented in [19] and [20] show an interesting idea, where the reverse recovery energy from the diodes is used to obtain soft commutation in the switches of the preregulated rectifiers with high power factor.

In this paper, the analysis of a zero-voltage-switching (ZVS) PWM full-bridge inverter with active clamping technique using the reverse recovery energy of the diodes to improve the efficiency of the converter is presented. The proposed structure uses only a single auxiliary switch and the diode reverse recovery energy technique to obtain soft commutation in all switches such as the rectifier shown in [20].

II. PROPOSED CIRCUIT

The proposed circuit is shown in Fig. 1. It presents a half-bridge inverter configuration, where Q1 and Q2 are the main switches, and QA is the auxiliary switch. C1, C2, and CA are the commutation capacitors.

The snubber circuit is formed by one controlled switch, QA, with antiparallel diode DA, one small inductor LS, and one clamping capacitor CS. Capacitor CS is responsible for the storage of the diode reverse recovery energy and for the clamping of the voltage across the switches. Inductor LS is responsible for the control of di/dt during the diode reverse recovery time.
The auxiliary switch works with constant duty cycle in all operation range. One of the main advantages of this converter consists in the use of only one auxiliary switch, which provides the clamping of the voltage and the ZVS conditions for all switches, including the auxiliary switch in the snubber circuit.

III. OPERATION STAGES (FOR THE FIRST HALF-CYCLE)

To simplify the analysis, the following assumptions are made: the circuit operates in steady state; the components are considered ideal; and the reverse recovery characteristic of diodes \(D_1\) and \(D_2\) is excluded. The voltage across the capacitor \(C_S\) and the current in the output inductor \(L_{OUT}\) are considered constant during the switching period. The parameter \(E\) represents the bus voltage \((E = V_1 + V_2)\), and \(vC_S\) is the voltage across the clamping capacitor \(C_S\). In the following paragraphs, the operation stage of the first positive half-cycle of the output current is described in detail. The main operation stages are shown in Fig. 2. Fig. 3 shows the main waveforms.

First stage \((t_0 - t_1)\): During this interval, the output current \(i_{OUT}\) is delivering energy to the source \(V_2\) via diode \(D_2\). At the same time, additional current \((iLS - i_{OUT})\) circulates through \(C_S\) and \(Q_A\). At the end of this stage, the current through inductor \(L_S\) reaches its maximum value, \(I_f + i_{OUT}\).

Second stage \((t_1 - t_2)\): This stage starts when the auxiliary switch \(Q_A\) is blocked. Current \(iLS\) charges capacitor \(C_A\) from zero to \(E + vC_S\) and discharges \(C_1\) from \(E + vC_S\) to zero.

Third stage \((t_2 - t_3)\): During this stage, the voltage across \(C_1\) is clamped by the antiparallel diode \(D_1\). At this moment, the voltage \(E = V_1 + V_2\) is applied across the inductor \(L_S\), and the current \(iLS\) linearly decreases. The diode \(D_2\) conducts the current \(iLS\), whereas \(D_1\) conducts the current \(iLS - i_{OUT}\).

Fourth stage \((t_3 - t_4)\): This stage begins when current \(iLS\) reaches \(i_{OUT}\) and flows through switch \(Q_1\). The turn-on occurs at zero voltage. Current \(iLS\) continues to decrease until inverting its direction, which begins the reverse recovery phase of diode \(D_2\). The inductor \(L_s\) limits the \(di/dt\).

Fifth stage \((t_4 - t_5)\): This stage starts when diode \(D_2\) finishes its reverse recovery phase. Current \(iLS\) begins the charging of capacitor \(C_2\) from zero to \(E + vC_S\) and discharging of \(C_A\) from \(E + vC_S\) to zero.

Sixth stage \((t_5 - t_6)\): At this stage, the voltage across capacitor \(C_A\) reaches zero, and it is clamped by diode \(D_A\). Current \(iLS\) increases due to the application of voltage \(vC_S\) across inductor \(L_S\). In this stage, switch \(Q_A\) must be turned on. It is important to emphasize that the drive time of switch \(Q_A\) is previously estimated and kept constant during the entire inverter operation range. Therefore, the use of current sensor is not necessary. This stage finishes when the current in \(L_s\) reaches zero.

Seventh stage \((t_6 - t_7)\): This stage begins when current \(iLS\) changes its direction and flows through switch \(Q_A\). Current \(iLS\) continues to linearly increase.

Eighth stage \((t_7 - t_8)\): During this stage, switch \(Q_1\) is blocked, and the current through \(C_S\) decreases, inverts its direction, and flows through diode \(D_A\). Capacitor \(C_1\) is charged from zero to \(E + vC_S\), and capacitor \(C_2\) is discharged from \(E + vC_S\) to zero.

Ninth stage \((t_8 - t_9)\): This stage begins when the voltage across capacitor \(C_2\) reaches zero, and it is clamped by diode \(D_2\). Current \(iLS\) continues to increase. This stage finishes when \(iLS\) is equal to \(i_{OUT}\), and the additional current \((iLS - i_{OUT})\) flows through the auxiliary switch \(Q_A\), which restarts the first operation stage.

For the second half-cycle, the operation stage is analogous and can be described in an identical way.

IV. MATHEMATICAL ANALYSIS OF THE SOFT-SWITCHING CIRCUIT

To guarantee ZVS conditions, in the second stage, it is necessary that the stored energy in the inductor \(L_S\) due to the additional current \(iC_S\) be sufficient to discharge capacitor \(C_1\) and to charge \(C_A\). Thus, by inspection of Fig. 2 (interval \(t_1 - t_2\)), the following condition can be formulated:

\[
L_S \cdot i_f^2 \geq (C_A + C_1)(E + vC_S)^2
\]

where \(i_f\) is the maximum current in \(C_S\), and \(vC_S\) is maintained constant during the switching period. The current \(i_f\) must be sufficient to promote the charge and discharge of the commutation capacitors. Assuming \(vC_S \ll E\) results to

\[
i_{f\min} \geq E \sqrt{\frac{C_1 + C_A}{L_S}}.
\]

It is necessary to know the clamping voltage behavior for the design of the switches and capacitor \(C_S\). In the steady-state conditions, the clamping capacitor average current must be zero. Thus,

\[
i_{C_{av}} = \frac{1}{T_S} \left[\int_{t_5}^{t_7} \frac{vC_S}{L_S} (t - t_f) \, dt \right. \]

\[
+ \left. \int_{t_5}^{T_s} \frac{vC_S}{L_S} (t - (i_{OUT} - t_f)) \, dt \right]
\]

where \(T_S\) is the switching period.
In relation to the switching period, the commutation time is very short. Therefore, the following simplifications can be made:

\[t_5 = t_1 = 0 \] \hspace{1cm} (4)

\[t_7 - t_5 = D \cdot T_S \] \hspace{1cm} (5)

\[t_7 = D \cdot T_S \] \hspace{1cm} (6)

where \(D \) is the duty cycle to the switching period.

From (4)–(6), (3) can be rewritten as follows:

\[
i_{CSav} = \frac{1}{T_S} \left[\int_0^{D \cdot T_S} \left(\frac{v_{CS}}{L_S} t - i_r \right) dt + \int_{D \cdot T_S}^{T_S} \left(\frac{v_{CS}}{L_S} t - i_{OUT} - i_r \right) dt \right]. \hspace{1cm} (7)
\]
Solving the integral equation and considering

\[i_{C_{\text{Sav}}} = 0 \]

we have

\[v_{C_S} = \frac{2 \cdot L_S}{T_S} \left[i_r + i_{\text{OUT}}(1 - D) \right]. \]

Considering that the load current is a sinusoidal function and is in phase with the output voltage, then,

\[i_{\text{OUT}}(\omega t) = \frac{E \cdot ma}{2 \cdot Z_{\text{OUT}}} \cdot \sin \omega t \]

where \(Z_{\text{OUT}} \) is the load impedance.

Fig. 4 shows some signals of the modulation strategy used to drive the main switches.

The sawtooth waveform is lined on the left edge. This facilitates the synchronism between the auxiliary switch and the main switches. The converter output voltage is controlled by the amplitude modulation factor \(ma \), which is obtained through the relation between the peak value of the sinusoidal reference signal and the peak value of the sawtooth waveform \((11) \), i.e.,

\[ma = \frac{v_{\text{ref}_{\text{pk}}}}{v_{\text{saw}_{\text{pk}}}}. \]

The inverter output voltage for a switching period can be expressed by

\[v_{\text{OUT}} = E \left(D - \frac{1}{2} \right). \]

From \((12) \), we can obtain the duty cycle \(D \), i.e.,

\[D = \frac{v_{\text{OUT}}}{E} + \frac{1}{2}. \]

The inverter output voltage for an output period is given by

\[v_{\text{OUT}}(\omega t) = \sqrt{2} \cdot v_{\text{OUT}_{\text{rms}}} \cdot \sin \omega t \]

where \(\omega \) is expressed by

\[\omega = 2 \cdot \pi \cdot f \]

and \(f \) represents the output frequency.

The maximum output voltage is given by

\[v_{\text{OUT}_{\text{pk}}} = \frac{E \cdot ma}{2}. \]

The root-mean-square (rms) output voltage is obtained from

\[v_{\text{OUT}_{\text{rms}}} = \frac{E \cdot ma}{2 \cdot \sqrt{2}}. \]

Equation \((18) \) shows the inverter duty cycle obtained from \((13), (14), \) and \((17) \), i.e.,

\[D(\omega t) = \frac{ma}{2} \cdot \sin \omega t + \frac{1}{2}. \]

Combining \((9), (10), \) and \((18) \), we obtain the expression of the snubber capacitor voltage \(v_{C_S} \) given by

\[v_{C_S}(\omega t) = \frac{2 \cdot L_S}{T_S} \left[i_r + i_{\text{OUT}}(1 - D) \right]. \]

where \(i_r \) is the peak reverse recovery current of the antiparallel diode, which can be given by \([25] \)

\[i_r = \sqrt{\frac{4}{3}} \cdot Q_{\text{rr}} \cdot \frac{E}{L_S}. \]

\(Q_{\text{rr}} \) represents the reverse recovery charge of the diode.

From the analysis of the current behavior in capacitor \(C_S \), the expression of current \(i_f \) can be obtained

\[i_f(\omega t) = \frac{v_{C_S}(\omega t)}{L_S} \cdot T_S - i_{\text{OUT}}(\omega t) - i_r. \]
Combining (10) and (19) with (21), we obtain the expression that represents the evolution of current i_f, i.e.,

$$i_f(\omega t) = i_r - \frac{E \cdot ma^2}{2 \cdot Z_{OUT}} \cdot \sin^2 \omega t. \quad (22)$$

The minimum value of expression (22) is located in $\pi/2$. Then,

$$i_{f\text{min}} = i_r - \frac{E \cdot ma^2}{2 \cdot Z_{OUT}}. \quad (23)$$

To guarantee the ZVS condition in all load range, the minimum value of current i_f obtained from (23) must be greater than the value obtained from (2), i.e.,

$$i_r - \frac{E \cdot ma^2}{2 \cdot Z_{OUT}} \geq E \sqrt{\frac{C_1 + C_A}{L_S}}. \quad (24)$$

V. DESIGN EXAMPLE

A. Input Data

The main specifications are shown in Table I.

B. Calculation of the Auxiliary Inductors

The auxiliary inductor is responsible for the di/dt limit during the turnoff of the main diodes. The di/dt is directly related to the peak reverse recovery current i_r of the antiparallel diodes. A “snappy” di/dt produces a large amplitude transient voltage and significantly contributes to electromagnetic interference.

In the design procedure, a di/dt that is usually found in the diode datasheet was chosen. This is a simple way to obtain the diode’s fundamental parameter for the design of the inverter. In this case, the di/dt chosen for the example was 40 A/μs. We know that the current ramp rate is determined by the external circuit. Thus,

$$L_S = \frac{E}{di/dt} = \frac{400}{40} = 10 \mu H. \quad (25)$$

C. Load Impedance

The load impedance is obtained from

$$Z_{OUT} = \sqrt{\frac{2}{15} + (2 \cdot \pi \cdot 60 \cdot 500 \mu F)^2} \approx 2.15 \Omega. \quad (26)$$

D. Diode Selection

For satisfactory performance of the inverter, it is important to choose a slow recovery diode. Therefore, it has been decided to use the diode SEMIKRON SKKD 81/12 (its characteristics are shown in Table II).

E. Switching Period

$$T_S = \frac{1}{f_S} = \frac{1}{20} = 50 \mu s. \quad (27)$$

F. Reverse Recovery Current

The reverse recovery current is given by

$$i_r = \sqrt{\frac{4}{3} \times 120 \mu F \times \frac{400}{10 \mu F}} = 83.2 \text{ A}. \quad (28)$$

G. Clamping Voltage Capacitor Behavior

Using (19), the curves described in Fig. 5 are obtained. For $Z_{OUT} = 2.15 \Omega$, the maximum clamping voltage is 38 V. We can observe that the voltage increment across the switches is smaller than in a conventional inverter.
The behavior of the current i_f, which is obtained from (2) and (22), can be seen in Fig. 6. It can be seen that current i_f has a minimum point that is located at $\pi/2$, and the intensity of the current is reduced with the increase of the load. To guarantee a ZVS condition in all load ranges, the minimum value of current i_f, which is obtained from (23), must be greater than the value obtained from (2), i.e.,

\[
\begin{align*}
 i_{f_{\text{min}}} &= 83.2 - \frac{400 \cdot 0.9^2}{2 \cdot 2.15} = 7.85 \text{ A} \quad (29) \\
 i_{f_{\text{min}}} &\geq 400 \sqrt{\frac{1.5\mu + 1.5\mu}{10\mu}} = 6.93 \text{ A} \quad (30) \\
 7.85 \text{ A} &\geq 6.93 \text{ A}. \quad (31)
\end{align*}
\]

VI. EXPERIMENTAL RESULTS

An inverter prototype rated 7.5 kW, which operates with PWM strategy, was built to evaluate the proposed circuit. The main specifications and components are given in Table III.

<table>
<thead>
<tr>
<th>TABLE III PROTOTYPE SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1, Q2, QA (IGBT GA250T60U) Manufactured by IR</td>
</tr>
<tr>
<td>D1, D2, DA (SKKD81/12) Manufactured by SEMIKRON</td>
</tr>
<tr>
<td>C1, C2, CA (Component’s Intrinsic Capacitance ≈1.5F)</td>
</tr>
<tr>
<td>Ls (10μH; Ferrite Core EE55/39; N=20 turns)</td>
</tr>
<tr>
<td>Cs (4 x 1000μF/350V; Electrolytic Capacitor)</td>
</tr>
<tr>
<td>LOUT (500μH, Output Inductor)</td>
</tr>
<tr>
<td>ROUT (2.15Ω, Output Resistor)</td>
</tr>
</tbody>
</table>

A. Experimental Waveforms

In the figures presented below, we can observe the experimental waveforms obtained from the laboratory prototype. Figs. 7–9 show the voltage across and the current through the switches. We can observe that for all switches, including the auxiliary one, the commutation occurs under ZVS conditions, which confirms the theoretical analysis. In Fig. 10, the current in the commutation auxiliary inductor for a switching period can be observed.
Fig. 10. Current in L_S (50 A/div, 10 μs/div).

Fig. 11. Voltage in C_S (10 V/div, 5 ms/div).

Fig. 12. Output voltage and current (50 V/div, 50 A/div, 5 ms/div).

The voltage across clamping capacitor C_S is shown in Fig. 11. We can note a very low voltage across C_S, which represents a minimal voltage stress across the devices. The output voltage and the current are presented in Fig. 12. Fig. 13 shows the efficiency as a function of the load range.

The efficiency was obtained using two wattmeters (Yokogawa Digital Power Meter WT230). One was put in the dc bus, and the other was put in the load resistance after the filter.

VII. CONCLUSION

A ZVS PWM inverter with active voltage clamping technique using the reverse recovery energy of the diodes has been developed. The operation stages for a steady-state condition, mathematical analysis, main waveforms, and experimental results were presented. The experimental results show a low voltage across the clamping capacitor. Switching losses are reduced due to the implementation of a simple active snubber circuit, which provides ZVS conditions for all the switches, including the auxiliary one. The reduced number of components and the simplicity of the structure increase its efficiency and reliability and make it suitable for practical applications. The proposed circuit presents soft commutation for all load ranges, which confirms the theoretical studies.

This topology presents certain advantages when compared to the conventional soft commutation inverters presented in the literature:

- soft commutation in all load ranges;
- simple structure with a low number of components;
- the use of a classical PWM modulation;
- auxiliary switch works with a constant duty cycle in all operation stages;
- the use of slow and low-cost rectifier diodes;
- low clamping voltage across the capacitor;
- simple design procedure with few restrictions;
- high efficiency.

With these characteristics, the authors believe that the proposed inverter circuit can be very useful for several industrial applications such as ac drive systems, power factor correction, uninterruptible power system, active filters, and induction heating.

REFERENCES

Marcello Mezaroba was born in Videira, SC, Brazil, on November 20, 1972. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Federal University of Santa Catarina, Florianópolis, SC, in 1996, 1998, and 2001, respectively.

He is currently a Titular Professor in the Department of Electrical Engineering, State University of Santa Catarina, Joinville, Brazil.

Denizar Cruz Martins (M’87) was born in São Paulo, Brazil, on April 24, 1955. He received the B.S. and M.S. degrees in electrical engineering from the Federal University of Santa Catarina, Florianópolis, Brazil, in 1978 and 1981, respectively, and the Ph.D. degree in electrical engineering from the Polytechnic National Institute of Toulouse, Toulouse, France, in 1986.

He is currently a Titular Professor in the Department of Electrical Engineering, Federal University of Santa Catarina.

Ivo Barbi (M’78–SM’90) was born in Gaspar, Santa Catarina, Brazil, in 1949. He received the B.S. and M.S. degrees in electrical engineering from the Federal University of Santa Catarina, Florianópolis, Brazil, in 1973 and 1976, respectively, and the Dr. Ing. degree from the Polytechnic National Institute of Toulouse, Toulouse, France, in 1979.

He founded the Brazilian Power Electronics Society and the Power Electronics Institute, Federal University of Santa Catarina and created the Brazilian Power Electronics Conference. He is currently a Professor of the Power Electronics Institute, Federal University of Santa Catarina.