Pengaruh Penggunaan Gadget terhadap Pola Tidur Remaja

Pola Tidur Remaja

Di era digital seperti saat ini, penggunaan gadget telah menjadi bagian yang tak terpisahkan dari kehidupan sehari-hari, terutama bagi remaja. Dengan adanya smartphone, tablet, dan komputer, remaja memiliki akses mudah ke berbagai informasi, hiburan, serta interaksi sosial. Namun, di balik manfaat tersebut, penggunaan gadget yang berlebihan dapat berdampak negatif terhadap kesehatan, salah satunya adalah pola tidur. Artikel ini akan membahas pengaruh penggunaan gadget terhadap pola tidur remaja, faktor-faktor yang mempengaruhi, serta solusi yang dapat diterapkan untuk mengatasi permasalahan ini.

Pengaruh Penggunaan Gadget terhadap Pola Tidur Remaja

1. Gangguan pada Produksi Melatonin

Melatonin adalah hormon yang berperan dalam mengatur siklus tidur dan bangun seseorang. Cahaya biru (blue light) yang dipancarkan oleh layar gadget dapat menghambat produksi melatonin di dalam tubuh. Ketika produksi melatonin terganggu, remaja akan mengalami kesulitan untuk merasa mengantuk dan akhirnya mengalami keterlambatan waktu tidur.

2. Tidur yang Tidak Berkualitas

Penggunaan gadget sebelum tidur dapat menyebabkan tidur menjadi kurang nyenyak. Beberapa studi menunjukkan bahwa paparan cahaya biru dari layar gadget dapat mengganggu fase tidur REM (Rapid Eye Movement), yaitu fase tidur yang penting untuk konsolidasi memori dan pemulihan tubuh. Akibatnya, remaja yang sering menggunakan gadget sebelum tidur cenderung mengalami kelelahan di pagi hari dan kurang fokus di siang hari.

3. Gangguan Ritme Sirkadian

Ritme sirkadian adalah jam biologis tubuh yang mengatur waktu tidur dan bangun seseorang. Ketika remaja terbiasa menggunakan gadget hingga larut malam, ritme sirkadian mereka dapat terganggu. Hal ini dapat menyebabkan pola tidur yang tidak teratur, seperti sulit tidur di malam hari dan bangun kesiangan.

4. Peningkatan Risiko Insomnia

Kebiasaan bermain gadget sebelum tidur dapat meningkatkan risiko insomnia. Remaja yang sering menonton video, bermain game, atau bersosial media sebelum tidur cenderung mengalami kesulitan untuk memejamkan mata. Aktivitas-aktivitas tersebut dapat merangsang otak sehingga sulit untuk beristirahat.

5. Gangguan Kesehatan Mental

Kurang tidur yang diakibatkan oleh penggunaan gadget juga dapat berdampak pada kesehatan mental remaja. Mereka yang sering mengalami kurang tidur lebih rentan terhadap stres, kecemasan, dan depresi. Selain itu, kurang tidur juga dapat menyebabkan perubahan suasana hati yang drastis, sehingga mempengaruhi hubungan sosial mereka dengan teman dan keluarga.

Faktor-Faktor yang Memengaruhi Penggunaan Gadget dan Pola Tidur Remaja

1. Media Sosial dan FOMO (Fear of Missing Out)

Banyak remaja yang merasa takut ketinggalan informasi atau tren terbaru di media sosial. Fenomena ini dikenal sebagai Fear of Missing Out (FOMO). Akibatnya, mereka terus menerus memeriksa ponsel mereka bahkan hingga larut malam, yang berkontribusi pada terganggunya pola tidur mereka.

2. Kecanduan Game Online

Game online sering kali dirancang dengan mekanisme yang membuat pemain sulit untuk berhenti. Banyak remaja yang bermain game hingga larut malam, bahkan mengorbankan waktu tidur mereka untuk menyelesaikan level atau berinteraksi dengan teman dalam permainan.

3. Tuntutan Akademik dan Penggunaan Gadget untuk Belajar

Tidak semua penggunaan gadget berdampak negatif. Banyak remaja yang menggunakan gadget untuk keperluan belajar, seperti mencari materi tambahan atau mengerjakan tugas. Namun, tanpa pengelolaan waktu yang baik, aktivitas belajar ini dapat berlanjut hingga larut malam dan mengganggu pola tidur.

4. Kurangnya Pengawasan Orang Tua

Peran orang tua sangat penting dalam mengontrol penggunaan gadget oleh remaja. Kurangnya pengawasan dapat membuat remaja bebas menggunakan gadget tanpa batasan waktu, yang pada akhirnya berdampak pada kebiasaan tidur mereka.

Cara Mengatasi Pengaruh Negatif Penggunaan Gadget terhadap Pola Tidur

1. Menerapkan Batasan Waktu Penggunaan Gadget

Orang tua dan remaja harus bersama-sama menentukan batasan waktu dalam penggunaan gadget, terutama di malam hari. Misalnya, menetapkan aturan untuk tidak menggunakan gadget setidaknya satu jam sebelum tidur.

2. Menggunakan Mode Malam (Night Mode)

Sebagian besar gadget modern memiliki fitur mode malam atau night mode yang dapat mengurangi paparan cahaya biru. Mengaktifkan fitur ini dapat membantu mengurangi dampak negatif pada produksi melatonin.

3. Membuat Rutinitas Tidur yang Teratur

Rutinitas tidur yang konsisten sangat penting untuk menjaga kualitas tidur. Remaja sebaiknya tidur dan bangun pada waktu yang sama setiap hari, bahkan di akhir pekan.

4. Menyediakan Alternatif Hiburan Sebelum Tidur

Daripada menggunakan gadget sebelum tidur, remaja dapat mencoba alternatif lain seperti membaca buku, mendengarkan musik yang menenangkan, atau melakukan meditasi ringan untuk membantu tubuh bersantai.

5. Menghindari Konsumsi Kafein di Malam Hari

Minuman berkafein seperti kopi, teh, dan minuman energi dapat membuat seseorang tetap terjaga lebih lama. Oleh karena itu, remaja sebaiknya menghindari konsumsi kafein di malam hari untuk memastikan tidur yang berkualitas.

6. Menciptakan Lingkungan Tidur yang Nyaman

Lingkungan tidur yang nyaman juga berkontribusi pada kualitas tidur. Mematikan lampu, mengurangi kebisingan, dan memastikan tempat tidur bersih serta nyaman dapat membantu remaja tidur lebih nyenyak.

Kesimpulan

Penggunaan gadget yang berlebihan dapat memberikan dampak negatif terhadap pola tidur remaja. Paparan cahaya biru dari layar gadget, kecanduan media sosial, dan kebiasaan bermain game online hingga larut malam adalah beberapa faktor utama yang mengganggu kualitas tidur mereka. Untuk mengatasi masalah ini, perlu adanya kesadaran dari remaja sendiri serta peran aktif dari orang tua dalam mengawasi dan memberikan edukasi mengenai pentingnya tidur yang cukup. Dengan menerapkan kebiasaan sehat dalam penggunaan gadget dan membangun rutinitas tidur yang baik, remaja dapat memiliki pola tidur yang lebih sehat dan berkualitas.

Dengan memahami dampak negatif gadget terhadap pola tidur, diharapkan remaja dapat lebih bijak dalam mengatur waktu penggunaan perangkat elektronik mereka. Tidur yang cukup dan berkualitas tidak hanya berdampak positif bagi kesehatan fisik, tetapi juga pada kesejahteraan mental dan akademik mereka di masa depan.

Baca juga : Dampak Polusi Udara terhadap Kesehatan Paru-Paru: Studi Kasus di Perkotaan


Dampak Polusi Udara terhadap Kesehatan Paru-Paru: Studi Kasus di Perkotaan

Dampak Polusi Udara

Polusi udara telah menjadi salah satu tantangan terbesar bagi kesehatan manusia, terutama di wilayah perkotaan yang padat penduduk. Kualitas udara yang buruk dapat memberikan dampak serius terhadap kesehatan paru-paru, meningkatkan risiko berbagai penyakit pernapasan, bahkan menyebabkan kematian dini. Studi terbaru menunjukkan bahwa masyarakat yang tinggal di kota-kota besar lebih rentan terhadap penyakit paru-paru akibat paparan polutan udara yang tinggi. Artikel ini akan mengulas dampak polusi udara terhadap kesehatan paru-paru serta beberapa studi kasus di kota-kota besar sebagai contoh nyata dari permasalahan ini.

Sumber Polusi Udara di Perkotaan

Perkotaan memiliki tingkat polusi udara yang lebih tinggi dibandingkan dengan daerah pedesaan. Hal ini disebabkan oleh beberapa faktor utama, antara lain:

  • Emisi Kendaraan Bermotor: Gas buang kendaraan bermotor merupakan sumber utama polusi udara di kota-kota besar. Karbon monoksida (CO), nitrogen dioksida (NO₂), dan partikel halus (PM2.5) menjadi polutan yang paling banyak dihasilkan.
  • Industri dan Pembangkit Listrik: Pabrik dan pembangkit listrik yang menggunakan bahan bakar fosil turut menyumbang emisi polutan berbahaya seperti sulfur dioksida (SO₂) dan ozon (O₃).
  • Aktivitas Konstruksi dan Sampah: Debu dari proyek konstruksi serta pembakaran sampah juga berkontribusi terhadap tingginya kadar polutan di udara.

Jenis Polutan Udara yang Berbahaya bagi Paru-Paru

Beberapa polutan yang memiliki dampak negatif terhadap kesehatan paru-paru meliputi:

  1. PM2.5 dan PM10 – Partikel halus yang dapat masuk jauh ke dalam paru-paru dan menyebabkan inflamasi serta gangguan pernapasan kronis.
  2. Ozon (O₃) – Dapat menyebabkan iritasi saluran pernapasan dan memperburuk penyakit asma serta bronkitis.
  3. Karbon Monoksida (CO) – Mengurangi kapasitas darah untuk membawa oksigen, sehingga meningkatkan risiko gangguan pernapasan.
  4. Sulfur Dioksida (SO₂) – Menyebabkan iritasi saluran napas dan dapat memperburuk penyakit paru obstruktif kronis (PPOK).
  5. Nitrogen Dioksida (NO₂) – Memicu peradangan paru-paru dan meningkatkan risiko infeksi saluran pernapasan.

Dampak Polusi Udara terhadap Kesehatan Paru-Paru

Dampak polusi udara terhadap paru-paru telah menjadi perhatian utama para ilmuwan dan tenaga medis. Beberapa efek utama yang telah terbukti melalui penelitian meliputi:

1. Peningkatan Kasus Penyakit Pernapasan

Polusi udara berkorelasi langsung dengan peningkatan kasus penyakit pernapasan seperti asma, bronkitis kronis, dan penyakit paru obstruktif kronis (PPOK). Partikel PM2.5 yang sangat kecil dapat menembus hingga ke alveolus paru-paru dan menyebabkan peradangan kronis.

2. Penurunan Fungsi Paru-Paru

Paparan jangka panjang terhadap polutan udara dapat menyebabkan penurunan kapasitas paru-paru. Studi menunjukkan bahwa anak-anak yang tumbuh di lingkungan dengan tingkat polusi tinggi cenderung memiliki kapasitas paru-paru yang lebih kecil dibandingkan dengan mereka yang tumbuh di lingkungan dengan udara bersih.

3. Risiko Kanker Paru-Paru

Paparan terhadap zat karsinogenik seperti benzena dan partikel halus telah dikaitkan dengan peningkatan risiko kanker paru-paru. Organisasi Kesehatan Dunia (WHO) telah mengklasifikasikan polusi udara sebagai salah satu penyebab utama kanker paru-paru.

4. Meningkatkan Kerentanan terhadap Infeksi Pernapasan

Orang yang sering terpapar polusi udara lebih rentan terhadap infeksi saluran pernapasan seperti pneumonia dan tuberkulosis. Ini karena polutan udara dapat melemahkan sistem kekebalan tubuh dan merusak sel-sel dalam saluran pernapasan.

Studi Kasus: Dampak Polusi Udara di Kota-Kota Besar

1. Jakarta, Indonesia

Jakarta merupakan salah satu kota dengan tingkat polusi udara tertinggi di dunia. Data dari IQAir menunjukkan bahwa tingkat PM2.5 di Jakarta sering melebihi ambang batas yang direkomendasikan oleh WHO. Hal ini berdampak pada meningkatnya kasus asma dan penyakit paru kronis di kalangan penduduk.

2. Beijing, China

Beijing pernah mengalami “kabut asap” tebal yang sangat berbahaya akibat emisi industri dan kendaraan bermotor. Pemerintah China telah mengambil langkah-langkah besar untuk mengurangi polusi, seperti membatasi jumlah kendaraan di jalan dan mengurangi penggunaan batu bara.

3. New Delhi, India

New Delhi dikenal sebagai salah satu kota dengan tingkat polusi udara terburuk di dunia. Pada musim dingin, kombinasi antara emisi kendaraan, industri, dan pembakaran sisa tanaman menyebabkan peningkatan drastis dalam kadar polutan udara. Hal ini mengakibatkan lonjakan kasus penyakit pernapasan di rumah sakit.

Upaya Mengurangi Dampak Polusi Udara terhadap Kesehatan Paru-Paru

Untuk mengurangi dampak negatif polusi udara terhadap paru-paru, berbagai upaya dapat dilakukan, antara lain:

  1. Menggunakan Masker saat Beraktivitas di Luar Ruangan – Masker seperti N95 dapat menyaring partikel halus yang berbahaya.
  2. Mengurangi Penggunaan Kendaraan Bermotor – Beralih ke transportasi umum atau kendaraan listrik dapat membantu mengurangi emisi polutan.
  3. Menanam Lebih Banyak Pohon – Tanaman dapat menyerap polutan udara dan meningkatkan kualitas oksigen di lingkungan sekitar.
  4. Meningkatkan Regulasi dan Pengawasan Lingkungan – Pemerintah perlu menerapkan regulasi yang lebih ketat terhadap industri dan kendaraan bermotor untuk menekan emisi polutan.
  5. Menggunakan Air Purifier dalam Ruangan – Pembersih udara dapat membantu mengurangi konsentrasi polutan dalam ruangan.

Kesimpulan

Polusi udara merupakan ancaman nyata bagi kesehatan paru-paru, terutama di wilayah perkotaan dengan tingkat polusi tinggi. Berbagai penelitian telah membuktikan bahwa polusi udara dapat menyebabkan penyakit pernapasan kronis, menurunkan fungsi paru-paru, hingga meningkatkan risiko kanker paru-paru. Studi kasus di berbagai kota besar seperti Jakarta, Beijing, dan New Delhi menunjukkan betapa seriusnya dampak polusi udara terhadap kesehatan masyarakat. Oleh karena itu, diperlukan langkah-langkah nyata untuk mengurangi polusi udara dan melindungi kesehatan paru-paru, baik melalui kebijakan pemerintah maupun kesadaran individu. Dengan upaya yang berkelanjutan, kita dapat menciptakan lingkungan yang lebih sehat dan bebas polusi untuk generasi mendatang.

Baca juga : Inovasi Liar Elektronik Daya: Dari Konsep Gila Hingga Teknologi Masa Depan


Inovasi Liar Elektronik Daya: Dari Konsep Gila Hingga Teknologi Masa Depan

Electric Shock Lie

Dalam dunia teknologi, kemajuan di bidang elektronik daya menjadi salah satu aspek yang terus berkembang dengan cepat. Dari gagasan aneh yang dianggap tidak mungkin hingga solusi revolusioner yang mengubah industri, inovasi di bidang ini tidak hanya meningkatkan efisiensi energi tetapi juga membuka jalan bagi masa depan yang lebih berkelanjutan. Artikel ini akan mengulas beberapa inovasi liar dalam elektronik daya yang berawal dari ide-ide gila hingga menjadi teknologi yang siap membentuk masa depan.

1. Elektronik Daya Berbasis Gelombang Mikro

Salah satu inovasi yang dianggap tidak masuk akal di masa lalu adalah pengisian daya nirkabel jarak jauh menggunakan gelombang mikro. Konsep ini pertama kali muncul pada tahun 1960-an, tetapi baru dalam beberapa dekade terakhir teknologi ini mengalami kemajuan pesat. Dengan menggunakan gelombang mikro sebagai media transfer energi, para ilmuwan kini mampu mengembangkan sistem pengisian daya jarak jauh tanpa kabel yang dapat diaplikasikan pada perangkat elektronik kecil hingga kendaraan listrik.

Teknologi ini memiliki potensi besar dalam berbagai bidang, mulai dari perangkat rumah tangga hingga eksplorasi luar angkasa. Beberapa perusahaan besar bahkan telah menguji coba pengisian daya berbasis gelombang mikro untuk drone dan kendaraan listrik guna mengurangi ketergantungan pada baterai konvensional.

2. Superkapasitor: Masa Depan Pengganti Baterai?

Dalam industri elektronik daya, baterai lithium-ion telah menjadi standar selama bertahun-tahun. Namun, munculnya superkapasitor telah mengguncang dunia teknologi dengan potensinya sebagai pengganti baterai yang lebih tahan lama dan lebih cepat dalam pengisian daya.

Superkapasitor bekerja dengan prinsip penyimpanan muatan elektrostatik, bukan reaksi kimia seperti pada baterai konvensional. Ini memungkinkan pengisian daya dalam hitungan detik hingga menit serta umur pakai yang lebih panjang. Kendati demikian, tantangan dalam penyimpanan energi yang lebih besar masih menjadi kendala utama. Namun, dengan penelitian yang terus berkembang, bukan tidak mungkin dalam beberapa tahun mendatang kita akan melihat superkapasitor menggantikan baterai dalam banyak aplikasi.

3. Energi Piezoelektrik: Memanen Daya dari Getaran

Siapa sangka bahwa setiap langkah yang kita ambil dapat menghasilkan energi? Teknologi piezoelektrik memungkinkan perangkat untuk memanen energi dari getaran mekanis, seperti gerakan manusia, getaran mesin, bahkan suara. Teknologi ini telah digunakan dalam berbagai aplikasi, seperti sensor medis yang dapat bekerja tanpa baterai, pakaian pintar yang dapat menghasilkan energi dari pergerakan pemakainya, hingga jalanan yang dapat mengubah tekanan kendaraan menjadi energi listrik.

Dengan pengembangan lebih lanjut, teknologi ini dapat diterapkan dalam skala lebih besar, seperti pembangkit listrik dari ombak laut atau bahkan jaringan transportasi yang mampu mengubah lalu lintas menjadi sumber daya listrik.

4. Sirkuit Fleksibel dan Transparan

Dulu, gagasan tentang sirkuit elektronik yang dapat ditekuk atau bahkan transparan dianggap tidak realistis. Namun, dengan perkembangan material seperti graphene dan nanoteknologi, para ilmuwan kini berhasil menciptakan sirkuit elektronik fleksibel yang dapat diterapkan dalam berbagai perangkat, termasuk layar OLED yang bisa digulung, pakaian pintar, hingga perangkat medis yang dapat ditanamkan dalam tubuh manusia.

Sirkuit fleksibel ini memungkinkan perkembangan perangkat yang lebih ringan, tahan lama, dan lebih nyaman digunakan. Masa depan elektronik daya akan sangat dipengaruhi oleh inovasi ini, di mana perangkat tidak lagi terbatas pada bentuk rigid seperti yang kita kenal saat ini.

5. Transfer Daya Melalui Udara dengan Resonansi Magnetik

Konsep pengisian daya nirkabel telah berkembang pesat dalam beberapa tahun terakhir. Namun, salah satu inovasi paling menarik adalah pengisian daya melalui udara dengan menggunakan resonansi magnetik. Teknologi ini memungkinkan perangkat untuk menerima daya tanpa perlu diletakkan di atas bantalan pengisian.

Resonansi magnetik bekerja dengan menciptakan medan magnet berosilasi yang dapat mentransfer energi ke perangkat yang memiliki frekuensi resonansi yang sesuai. Dengan teknologi ini, kita dapat melihat rumah dan kantor masa depan di mana perangkat tidak perlu dicolokkan untuk tetap berfungsi. Ini juga dapat diterapkan dalam industri otomotif, memungkinkan kendaraan listrik untuk diisi ulang secara otomatis saat berada di jalan.

6. Panel Surya Transparan

Panel surya telah menjadi sumber energi terbarukan yang semakin populer. Namun, inovasi terbaru dalam teknologi ini memungkinkan pengembangan panel surya transparan yang dapat dipasang di jendela, layar gadget, atau bahkan di kaca kendaraan.

Dengan memanfaatkan teknologi sel surya organik dan material fotovoltaik transparan, para ilmuwan telah berhasil menciptakan panel yang dapat menangkap cahaya di luar spektrum yang terlihat oleh mata manusia. Ini memungkinkan kaca jendela atau layar perangkat elektronik untuk berfungsi sebagai sumber energi tambahan tanpa mengurangi transparansi.

Kesimpulan

Dari pengisian daya jarak jauh hingga sirkuit fleksibel dan panel surya transparan, inovasi dalam elektronik daya terus membuka kemungkinan baru dalam berbagai industri. Banyak dari ide-ide ini awalnya dianggap terlalu liar atau tidak realistis, tetapi dengan perkembangan teknologi yang pesat, kini menjadi kenyataan yang siap membentuk masa depan.

Dengan terus berinovasi dan mengeksplorasi batas-batas baru dalam elektronik daya, kita akan melihat transformasi besar dalam cara energi digunakan dan didistribusikan. Masa depan yang lebih efisien dan berkelanjutan semakin dekat, dan inovasi liar dalam elektronik daya akan memainkan peran utama dalam mencapainya.

Baca juga : Berikut Informasi Dan Fakta-Fakta Seputar Tenaga Surya


Berikut Informasi Dan Fakta-Fakta Seputar Tenaga Surya

informasi dan fakta tentang tenaga surya

Energi matahari adalah teknologi menggunakan energi matahari dan menyediakan energi tersebut. Pada tahun 2011, teknologi ini menghasilkan kurang dari sepersepuluh permintaan energi global.

Banyak orang yang akrab dengan apa yang disebut sel fotovoltaik, atau panel surya, yang muncul pada benda-benda seperti pesawat ruang angkasa, atap rumah, dan komputer genggam. Baterai ini terbuat dari bahan yang mirip dengan semikonduktor yang ditemukan dalam chip komputer. Ketika sinar matahari mengenai sel, elektron dilepaskan dari atomnya. Baterai menghasilkan listrik ketika elektron mengalir melaluinya.

Dalam skala yang lebih besar, pembangkit listrik tenaga panas matahari menggunakan teknik berbeda untuk memfokuskan energi matahari menjadi sumber panas. Panasnya kemudian digunakan untuk merebus air guna menggerakkan turbin uap, yang menghasilkan listrik dengan cara yang mirip dengan pembangkit listrik tenaga batu bara dan nuklir, yang menyediakan listrik bagi ribuan orang.

Cara Memanfaatkan Energi Matahari
Dalam salah satu metode, celah kaca panjang berbentuk U memfokuskan sinar matahari ke saluran minyak yang mengalir melalui tengahnya. Minyak panas merebus air untuk menghasilkan listrik. Metode lain menggunakan cermin portabel untuk memfokuskan sinar matahari ke menara penerima, tempat penerima berada. Generator digerakkan oleh panas garam cair yang mengalir melalui penerima.

Teknologi surya lainnya bersifat pasif. Misalnya, jendela besar yang ditempatkan di sisi bangunan yang terkena sinar matahari memungkinkan sinar matahari mencapai bahan penyerap panas di lantai dan dinding. Permukaan ini mengeluarkan panas pada malam hari untuk menjaga bangunan tetap hangat. Selain itu, panel penyerap panas di atap memanaskan cairan di dalam pipa untuk mengalirkan air panas ke rumah.

Energi matahari dikenal sebagai sumber bahan bakar yang tidak ada habisnya, tidak menimbulkan polusi, dan umumnya tidak bersuara. Teknologi ini juga sangat fleksibel. Misalnya, sel surya menghasilkan listrik untuk tempat-tempat yang jauh seperti satelit di orbit Bumi dan kabin jauh di Pegunungan Rocky semudah mereka memberi daya pada gedung-gedung di pusat kota dan mobil masa depan.

Perangkap
Tanpa perangkat penyimpanan seperti baterai, tenaga surya tidak akan berfungsi pada malam hari, dan cuaca mendung dapat menyebabkan teknologi tidak berfungsi pada siang hari. Teknologi tenaga surya juga sangat mahal dan membutuhkan banyak lahan untuk menangkap energi matahari dengan kecepatan yang bermanfaat bagi banyak orang.

Meskipun terdapat keterbatasan, penggunaan energi surya telah meningkat sekitar 20% per tahun selama 15 tahun terakhir karena penurunan harga yang cepat dan peningkatan efisiensi. Pasar utama sel surya adalah Jepang, Jerman, dan Amerika. Melalui insentif pajak dan koordinasi yang efektif dengan perusahaan energi, energi surya biasanya akan terbayar dalam waktu lima hingga 10 tahun.

Sisi Gelap Dari Tenaga Surya Jarang Diketahui Masyarakat

sisi gelap tenaga surya

Masa keemasan pembangkit listrik tenaga surya telah tiba. Di Amerika Serikat, instalasi panel surya rumah telah sepenuhnya pulih dari perlambatan akibat COVID, dengan para analis memperkirakan total kapasitas terpasang akan melebihi 19 gigawatt, dibandingkan dengan 13 gigawatt pada akhir tahun 2019. Jumlah tersebut dapat meningkat empat kali lipat dalam 10 tahun ke depan, menurut data data riset industri. Hal ini dilakukan sebelum mempertimbangkan dampak lebih mendalam dari peraturan dan insentif baru yang dapat diterapkan oleh pemerintahan Biden.

Kinerja Solar selama pandemi ini dapat dikaitkan dengan Kredit Pajak Investasi Tenaga Surya, yang mencakup 26% biaya terkait tenaga surya untuk seluruh pelanggan perumahan dan komersial (turun sedikit dari 30% pada tahun 2006-2019). Setelah tahun 2023, kredit pajak akan dikurangi secara permanen menjadi 10% untuk pemasang komersial dan dihilangkan seluruhnya untuk pembeli rumah. Oleh karena itu, penjualan tenaga surya kemungkinan akan meningkat dalam beberapa bulan mendatang karena pembeli akan terburu-buru menarik uang tunai sementara mereka masih bisa mendapatkan keuntungan.

Subsidi pajak bukan satu-satunya alasan boomingnya tenaga surya. Selama 10 tahun terakhir, meskipun biaya produksi (dan harga) telah turun secara signifikan, efisiensi konversi panel surya telah meningkat sebesar 0,5% per tahun berkat beberapa gelombang produksi produk, yang sebagian besar didorong oleh produsen panel surya. . Bagi konsumen akhir, hal ini berarti biaya awal per kilowatt listrik yang dihasilkan jauh lebih rendah.

Hal ini merupakan kabar baik, tidak hanya bagi industri namun juga bagi siapa saja yang menyadari perlunya transisi dari bahan bakar fosil ke energi terbarukan untuk melindungi masa depan planet kita. Namun ada satu catatan penting yang jarang dibicarakan orang.

Ada Panel Di Mana-Mana
Insentif finansial dengan cepat disesuaikan untuk mendorong pelanggan mengganti panel yang ada dengan model yang lebih baru, lebih murah, dan lebih efisien. Dalam industri di mana solusi sirkular, seperti daur ulang, masih sangat kurang, tingginya jumlah panel yang dibuang dapat dengan cepat menimbulkan risiko besar.

Ini jelas bukan cerita yang diceritakan oleh pejabat dan sumber industri. Perkiraan resmi dari Badan Energi Terbarukan Internasional (IRENA) menunjukkan bahwa “sejumlah besar limbah diperkirakan akan dihasilkan setiap tahun pada awal tahun 2030an”, kemungkinan mencapai 78 juta ton pada tahun 2050. Tidak ada keraguan bahwa ini adalah angka yang mengesankan. Namun dengan persiapan bertahun-tahun, hal ini menggambarkan peluang bernilai miliaran dolar untuk memulihkan bahan-bahan berharga, bukan ancaman serius. Ancamannya terletak pada kenyataan bahwa perkiraan IRENA didasarkan pada pelanggan yang menggunakan panel surya selama siklus hidup 30 tahunnya. Mereka tidak mempertimbangkan kemungkinan penggantian dini dalam skala besar.

Hal ini memang benar dalam penelitian kami. Dengan menggunakan data AS yang sebenarnya, kami memodelkan faktor-faktor pendorong yang memengaruhi keputusan konsumen untuk beralih ke berbagai skenario. Kami memperkirakan ada tiga variabel yang sangat penting ketika menentukan keputusan penggantian: harga pemasangan, tingkat penggantian kerugian (yaitu, tingkat penjualan tenaga surya ke jaringan listrik), dan efisiensi modul. Jika biaya untuk meningkatkannya cukup rendah dan efisiensi serta tingkat pengembaliannya cukup tinggi, kami pikir konsumen yang rasional akan melakukan peralihan, terlepas dari apakah panel surya mereka saat ini sudah berusia 30 tahun atau belum.

Misalnya, seorang pelanggan yang tinggal di California (sebut saja dia “Ms. Brown pada tahun 2011, memasang panel surya di rumahnya. Secara teori, dia dapat menggunakan panel tersebut selama 30 tahun, hingga tahun 2041. Pada saat pemasangan, total biayanya adalah $40.800, 30% di antaranya dapat dikurangkan dari pajak berkat Kredit Pajak Investasi Tenaga Surya. Pada tahun 2011, Ny. Brown akan menghasilkan 12.000 kilowatt listrik dari panel suryanya, setara dengan listrik senilai $2.100. Pada setiap tahun berikutnya, kinerja panelnya menurun sekitar 1% seiring dengan penurunan modul.

Sekarang bayangkan pada tahun 2026, ketika peralatannya sudah setengah jalan dalam siklus hidupnya, Ms. Brown untuk mempertimbangkan kembali pilihan tenaga suryanya. Dia pernah mendengar bahwa panel generasi terbaru lebih murah dan lebih baik—dan ketika dia mengerjakan pekerjaan rumahnya, dia mendapati bahwa itulah masalahnya. Berdasarkan perkiraan realistis saat ini. Pada tahun 2026, Ny. Brown memperkirakan biaya pembelian dan pemasangan panel surya akan menjadi 70% lebih rendah daripada pada tahun 2011. Selain itu, panel generasi baru akan menghasilkan $2.800 per tahun, $700 lebih mahal dari perangkat barunya saat ini. Oleh karena itu, memperbarui panelnya sekarang dibandingkan menunggu 15 tahun akan meningkatkan nilai sekarang bersih (NPV) peralatan tenaga surya miliknya sebesar lebih dari $3.000 (dalam dolar tahun 2011). Jika Ny. Brown adalah seniman yang rasional, dia memilih untuk berganti pekerjaan lebih awal. Jika dia sangat bijak dalam hal keuangan, dia akan membuat keputusan ini lebih awal – perhitungan kami untuk skenario Ms Brown menunjukkan bahwa mulai tahun 2021, NPV dari penggantian panel akan melebihi NPV dari pemeliharaan panel.

Jika diganti lebih cepat, seperti prediksi model statistik kami, proyek-proyek tersebut dapat menghasilkan limbah 50 kali lebih banyak dibandingkan proyek IRENA hanya dalam waktu empat tahun. Berdasarkan perkiraan rasio berat terhadap kapasitas sebesar 90 ton/MW, jumlah ini setara dengan sekitar 315.000 ton limbah.

Meskipun angka-angka ini mengkhawatirkan, angka-angka ini mungkin tidak sepenuhnya mencerminkan krisis karena analisis kami terbatas pada instalasi perumahan. Jika Anda menambahkan panel komersial dan industri, jumlah penggantiannya bisa lebih besar.

Mahalnya Biaya Limbah Surya
Kapasitas industri daur ulang saat ini sama sekali tidak siap menghadapi banyaknya sampah yang dihasilkan. Insentif finansial untuk laba atas investasi di sektor tenaga surya semakin kuat. Meskipun pelat ini mengandung sejumlah kecil bahan berharga, seperti perak, sebagian besar pelat tersebut terbuat dari kaca, bahan yang nilainya sangat rendah. Umur panel surya yang panjang juga menghambat inovasi di bidang ini.

Ledakan produksi energi surya telah melampaui infrastruktur daur ulang di negara tersebut. Misalnya, First Solar adalah satu-satunya produsen panel surya AS yang kami ketahui memiliki program daur ulang yang hanya berlaku untuk produknya sendiri, dengan kapasitas produksi global sebesar 2 juta sel surya panel per tahun. Pada kapasitas produksi saat ini, biaya daur ulang panel surya diperkirakan mencapai 20 hingga 30 USD. Mengirim panel surya yang sama ke tempat pembuangan sampah hanya berharga $1 hingga $2.

Namun, biaya daur ulang langsung hanyalah sebagian dari beban akhir masa pakainya. Panel surya adalah perangkat rumit dan besar yang sering dipasang pada atap tempat tinggal. Pekerja terampil diharuskan membongkar dan memindahkannya sebelum roboh sebelum dimuat ke truk. Selain itu, beberapa pemerintah mungkin mengklasifikasikan panel surya sebagai limbah berbahaya karena mengandung sejumlah kecil logam berat (kadmium, timbal, dll.). Klasifikasi ini disertai dengan serangkaian pembatasan yang mahal—antara lain limbah berbahaya hanya dapat diangkut pada waktu yang ditentukan dan melalui rute tertentu.

Biaya overhead yang tidak terduga ini dapat melemahkan daya saing industri. Jika kita memplot instalasi di masa depan berdasarkan kurva pertumbuhan logistik yang dibatasi pada 700 GW pada tahun 2050 (batas atas perkiraan NREL untuk pasar perumahan AS) dan segera melakukan penggantian, kita melihat bahwa limbah yang dihasilkan akan melebihi instalasi baru pada tahun 2031. Pada tahun 2035, jumlah limbah yang dihasilkan akan melebihi instalasi baru pada tahun 2031. jumlah panel yang dibuang akan menjadi 2,56 kali lipat jumlah panel baru yang terjual. Hal ini, pada gilirannya, akan menyebabkan LCOE (levelized cost of energy, ukuran total biaya suatu aset penghasil energi selama siklus hidupnya) meningkat hingga empat kali lipat dari perkiraan saat ini. Masa depan ekonomi pembangkit listrik tenaga surya – yang terlihat sangat cerah jika dilihat dari perspektif tahun 2021 – akan segera memudar karena industri ini ambruk karena beban limbah yang dihasilkannya sendiri.

Siapa Yang Akan Membayar Tagihannya?
Regulator hampir pasti akan memutuskan siapa yang menanggung biaya pembersihan. Ketika gelombang pertama penggantian limbah awal terus menumpuk selama beberapa tahun ke depan, pemerintah AS – dimulai dari negara bagian namun akhirnya meningkat ke tingkat federal – akan memperkenalkan undang-undang daur ulang panel surya. Dapat dibayangkan bahwa peraturan AS di masa depan akan mengikuti pola arahan WEEE Uni Eropa, yang merupakan kerangka hukum untuk daur ulang dan pembuangan limbah elektronik di negara-negara anggota UE. Negara-negara bagian AS yang telah memberlakukan undang-undang daur ulang elektronik sering kali mengikuti model WEEE. (Petunjuk ini diubah pada tahun 2014 untuk memasukkan panel surya.) Di UE, tanggung jawab untuk mendaur ulang limbah (sejarah) sebelumnya diserahkan kepada produsen berdasarkan pangsa pasar saat ini.

Langkah pertama dalam pencegahan bencana adalah produsen panel surya mulai melobi undang-undang serupa di AS saat ini, daripada menunggu panel surya mulai menyumbat tempat pembuangan sampah. Berdasarkan pengalaman kami dalam menyusun dan menerapkan perubahan terhadap Petunjuk WEEE asli pada akhir abad ke-21, kami menemukan bahwa salah satu tantangan terbesar di tahun-tahun awal adalah menentukan tanggung jawab atas sejumlah besar sampah yang terakumulasi (juga dikenal sebagai sampah yatim piatu). ) diciptakan oleh perusahaan yang tidak lagi aktif di bidang elektronik.

Dalam kasus tenaga surya, peraturan baru dari Beijing yang bertujuan untuk mengurangi subsidi bagi produsen panel surya sekaligus meningkatkan tender wajib yang kompetitif untuk proyek tenaga surya baru semakin memperumit masalah ini. Dalam industri yang didominasi oleh perusahaan Tiongkok, hal ini menambah unsur ketidakpastian. Ketika dukungan dari pemerintah pusat melemah, beberapa produsen Tiongkok mungkin keluar dari pasar. Salah satu alasan untuk mendorong undang-undang saat ini dan bukan nanti adalah untuk memastikan bahwa tanggung jawab untuk mendaur ulang sampah yang masuk dibagi secara adil antara produsen peralatan yang terlibat. Jika undang-undang tersebut terlambat diperkenalkan, perusahaan-perusahaan yang tersisa akan terpaksa menghadapi kekacauan yang merugikan yang ditinggalkan oleh pabrikan Tiongkok sebelumnya.

Namun yang terpenting, kemampuan daur ulang panel surya yang diperlukan harus ditetapkan sebagai bagian dari infrastruktur komprehensif yang habis masa pakainya, termasuk pembongkaran, transportasi, dan (juga) fasilitas. Bahkan jika penggantian awal yang paling optimis bagi kami adalah benar, perusahaan mungkin tidak mempunyai cukup waktu untuk melakukannya sendiri. Subsidi pemerintah mungkin merupakan satu-satunya cara untuk segera meningkatkan kapasitas yang sepadan dengan besarnya permasalahan sampah yang ada. Para pelobi dunia usaha dapat memberikan argumen yang meyakinkan mengenai intervensi pemerintah, dengan fokus pada gagasan bahwa limbah merupakan eksternalitas negatif dari perubahan cepat yang diperlukan untuk meluasnya penggunaan teknologi energi baru seperti energi surya. Oleh karena itu, biaya pembangunan infrastruktur tenaga surya yang sudah habis masa pakainya merupakan bagian yang tidak dapat dihindari dalam program penelitian dan pengembangan yang mendukung energi ramah lingkungan.

Bukan Hanya Energi Surya
Teknologi energi terbarukan lainnya juga menghadapi masalah serupa. Misalnya, para ahli memperkirakan bahwa lebih dari 720.000 ton bilah turbin angin raksasa akan berakhir di tempat pembuangan sampah di Amerika. dalam 20 tahun ke depan kecuali kapasitas pemrosesan meningkat secara signifikan. Berdasarkan perkiraan konsensus, saat ini hanya 5% baterai kendaraan listrik yang didaur ulang – sebuah ketertinggalan yang harus diatasi oleh para pembuat mobil karena penjualan kendaraan listrik terus tumbuh sebesar 40% setiap tahunnya. Satu-satunya perbedaan utama antara teknologi ramah lingkungan dan panel surya adalah panel surya dari situs game online https://betberry.co/ , merupakan penghasil pendapatan bagi konsumen. Oleh karena itu, dua aktor yang mencari keuntungan – produsen panel surya dan konsumen akhir – harus puas agar bisa diadopsi secara massal.

Semua hal ini tidak boleh menimbulkan keraguan serius terhadap masa depan atau kebutuhan akan energi terbarukan. Ilmu pengetahuan menyatakan dengan tegas: Terus bergantung pada bahan bakar fosil seperti yang kita lakukan saat ini akan meninggalkan generasi mendatang dalam kondisi planet yang hancur dan sekarat. Mungkin diperlukan waktu sekitar empat puluh tahun agar ekonomi tenaga surya menjadi stabil hingga pada titik di mana konsumen tidak dipaksa untuk memperpendek masa pakai panel surya, yang tampaknya tidak berarti apa-apa jika dibandingkan dengan segala untung dan ruginya. Namun tujuan besar ini tidak membuat transisi ke energi terbarukan menjadi lebih mudah. Di semua industri, teknologi berkelanjutan cenderung mengabaikan limbah yang dihasilkannya. Strategi untuk berpartisipasi dalam ekonomi sirkular sangatlah penting – semakin cepat semakin baik.

BACA JUGA : Pentingnya Teknik Tenaga dan Elektronika Daya


Fakta & Statistik Utama Energi Surya Untuk Tahun 2023

Fakta & Statistik Utama Energi Surya Untuk Tahun 2023

Dalam beberapa tahun terakhir, tenaga surya telah berkembang pesat di Amerika Serikat. Kapasitas tenaga surya nasional melebihi 135.700 megawatt (MW) pada akhir tahun 2022 menurut data yang didapatkan oleh maha168 di indonesia, cukup untuk memberi daya pada 24 juta rumah, menurut Solar Energy Industries Association (SEIA). Panel surya adalah investasi menarik bagi pemilik rumah yang biasanya membayar tagihan listrik yang tinggi, memiliki atap yang terkena sinar matahari, dan ingin mengurangi dampak lingkungan serta membayar listrik di muka selama 25 tahun. Panel surya papan atas kini hadir dengan garansi pabrik hingga 25 tahun, dan perusahaan instalasi surya terbaik juga menawarkan garansi pengerjaan, memungkinkan Anda memaksimalkan produksi dari waktu ke waktu.

Ada beberapa kesalahpahaman umum tentang tenaga surya, namun bila digunakan dalam aplikasi yang tepat, panel dapat memberikan hasil yang sangat baik. Dalam artikel ini, Tim Beranda Panduan menjelaskan beberapa fakta dan statistik penting yang perlu Anda ketahui tentang penggunaan tenaga surya pada tahun 2023.

Efisiensi Energi surya

Efisiensi Energi surya

90% hingga 97% bahan panel surya dapat didaur ulang dan dapat digunakan kembali untuk keperluan lain jika dibongkar. Panel surya terbuat dari sejumlah besar aluminium, tembaga, dan kaca. Bahan-bahan ini dapat didaur ulang untuk memproduksi banyak produk lainnya, termasuk panel surya baru. SEIA meluncurkan Program Daur Ulang PV Nasional pada tahun 2016, yang mencakup daftar pendaur ulang panel surya di seluruh Amerika Serikat. Panel surya dapat menghasilkan listrik selama puluhan tahun tanpa mengeluarkan emisi karbon. Setelah panel surya mencapai akhir masa pakainya, panel surya dapat didaur ulang berkat desain modularnya. Sebagai perbandingan, pembangkit listrik konvensional yang menggunakan bahan bakar fosil menghasilkan emisi yang signifikan sepanjang masa pakainya dan tidak dapat dinonaktifkan semudah panel surya.

Pekerjaan Energi Surya

Pekerjaan Energi Surya

Industri tenaga surya AS telah menciptakan ribuan lapangan kerja di bidang manufaktur, instalasi, penjualan, dan banyak lagi. Industri tenaga surya AS mempekerjakan lebih dari 255.000 orang, menurut Sensus Pekerjaan Tenaga Surya Nasional ke-12. Pertumbuhan lapangan kerja tenaga surya lima kali lebih cepat dibandingkan pertumbuhan lapangan kerja secara keseluruhan di Amerika Serikat. Biro Statistik Tenaga Kerja AS mencantumkan “pemasang tenaga surya” sebagai salah satu pekerjaan yang diperkirakan akan tumbuh paling cepat antara tahun 2021 dan 2031. Tingkat pertumbuhan yang diharapkan adalah 27%.

California menyumbang hampir 40% pembangkit listrik tenaga surya di AS. California adalah salah satu negara bagian yang paling cerah, seperti yang terlihat pada Atlas Surya Global Bank Dunia. Negara bagian ini juga mempunyai listrik mahal yang melebihi rata-rata nasional sebesar 63,5 persen, menurut Administrasi Informasi Energi (EIA). Kombinasi kedua faktor ini menciptakan insentif besar bagi rumah dan bisnis di California untuk menggunakan panel surya. Yang mengejutkan, lebih banyak responden yang tinggal di California dibandingkan negara bagian lain, mewakili 123 dari 1.000 responden dalam survei pemilik rumah bertenaga surya pada bulan Maret 2023. Golden State juga menawarkan berbagai program insentif dan opsi pembiayaan untuk sistem tata surya rumah guna mempermudah pembelian panel. Program-program ini juga tersedia dari pemerintah negara bagian lain dan perusahaan utilitas. Perusahaan tenaga surya di California mempekerjakan lebih dari 75.000 pekerja, hampir 30% dari angkatan kerja industri, menurut SolarStates.org.

Baca Juga : Menggali Potensi Elektronik Daya

Energi Matahari Sebagai Solusinya

Energi Matahari Sebagai Solusinya

Menurut Departemen Energi AS, panel surya seluas 22.000 mil persegi (kira-kira seukuran Danau Michigan) dapat menghasilkan listrik yang cukup untuk seluruh Amerika Serikat. Faktanya, tenaga surya terdistribusi atau tenaga surya di atap lebih masuk akal dibandingkan tenaga surya terkonsentrasi dalam jumlah besar karena lebih sedikit daya yang hilang melalui jalur transmisi dan distribusi. EIA memperkirakan bahwa total konsumsi energi rumah tangga di AS akan mencapai 2 triliun kWh pada tahun 2050, dan tenaga surya dapat membantu memenuhi permintaan yang terus meningkat ini.


Menggali Potensi Elektronik Daya

Menggali Potensi Elektronik Daya

Menggali Potensi Elektronik Daya

Selamat datang di dunia penelitian elektronik daya, di mana para ilmuwan dan insinyur bekerja keras untuk menggali potensi yang belum terungkap dalam bidang energi. Dalam upaya untuk menciptakan solusi yang lebih efisien, berkelanjutan, dan andal dalam penggunaan dan produksi energi, penelitian elektronik daya menjadi semakin penting.

Dalam artikel ini, kita akan menjelajahi berbagai topik terkait penelitian elektronik daya yang menarik dan menginspirasi. Dari konversi energi terbarukan hingga pengendalian dan manajemen daya yang cerdas, serta keamanan dan keandalan sistem, kita akan melihat bagaimana penelitian dalam bidang ini terus memajukan teknologi dan membawa dampak positif dalam kehidupan sehari-hari.

Di tengah upaya besar ini, perusahaan seperti playtech yang terkenal sebagai situs judi terpercaya, juga berperan dalam dunia penelitian elektronik daya. Dalam upaya untuk mengoptimalkan penggunaan energi dan meningkatkan efisiensi sistem mereka, Playtech telah berinvestasi dalam penelitian dan pengembangan teknologi energi terbarukan. Dengan menggunakan panel surya dan sistem manajemen daya cerdas, Playtech telah mengambil langkah-langkah untuk mengurangi dampak lingkungan mereka dan mempromosikan penggunaan energi yang berkelanjutan dalam operasi mereka.

Penelitian dalam konversi energi terbarukan menjadi sangat penting dalam menghadapi tantangan perubahan iklim dan meningkatnya permintaan energi yang berkelanjutan. Para ilmuwan berfokus pada pengembangan teknologi yang dapat meningkatkan efisiensi panel surya, turbin angin, dan sistem penyimpanan energi, sehingga mengoptimalkan penggunaan sumber energi terbarukan dan mempercepat transisi menuju masyarakat yang lebih hijau.

Penggunaan elektronik daya telah menjadi bagian integral dalam kehidupan sehari-hari kita, mulai dari perangkat elektronik portabel hingga sistem tenaga listrik yang kompleks. Penelitian di bidang elektronik daya terus berkembang untuk mengoptimalkan efisiensi, keandalan, dan keberlanjutan sistem kelistrikan. Dalam artikel ini, kita akan membahas beberapa topik terkait penelitian elektronik daya yang menarik dan berpotensi mengubah cara kita menggunakan dan menghasilkan energi.

BACA JUGA: Apa itu Elektronika Daya?

Penelitian Elektronik Daya Menggali Potensi Energi sebagai berikut

Menggali Potensi Elektronik Daya

Konversi Energi Terbarukan: Mendorong Keberlanjutan

 Dalam era perubahan iklim dan peningkatan kebutuhan energi yang berkelanjutan, penelitian elektronik daya memainkan peran penting dalam mengoptimalkan konversi energi terbarukan. Studi tentang teknologi seperti panel surya, turbin angin, dan sistem penyimpanan energi adalah topik yang menarik dalam penelitian ini. Fokusnya adalah meningkatkan efisiensi konversi energi terbarukan dan mengembangkan metode yang lebih efektif untuk mengintegrasikan sumber energi terbarukan ke dalam jaringan listrik.

Elektronik Daya Tingkat Tinggi : Menguatkan Infrastruktur Energi

Aplikasi yang membutuhkan daya tinggi, seperti sistem transportasi elektrik, pemrosesan data tingkat tinggi, dan industri berat, menuntut pengembangan teknologi elektronik daya yang dapat mengatasi tantangan daya yang besar. Penelitian dalam bidang ini berfokus pada pengembangan konverter daya yang efisien, semikonduktor daya tinggi, dan teknik manajemen termal yang inovatif. Tujuannya adalah meningkatkan efisiensi, keandalan, dan kinerja sistem daya tingkat tinggi.

Pengendalian dan Manajemen Daya: Optimalkan Efisiensi Energi

Pengendalian dan manajemen daya yang cerdas menjadi faktor kunci dalam sistem kelistrikan yang kompleks. Penelitian ini berfokus pada pengembangan algoritma kontrol yang cerdas dan metode manajemen daya yang adaptif. Dengan menggunakan teknik-teknik seperti kontrol prediktif, optimisasi, dan pembelajaran mesin, penelitian ini bertujuan untuk meningkatkan efisiensi penggunaan energi, mengoptimalkan distribusi daya, dan mengurangi kerugian daya.

Komponen Elektronik Daya: Inovasi untuk Performa Optimal

Menggali Potensi Elektronik Daya

Penelitian juga dilakukan pada komponen-komponen kunci dalam sistem elektronik daya, seperti inverter, pengontrol daya, transistor daya tinggi, dan filter daya. Tujuannya adalah meningkatkan efisiensi, mengurangi kerugian daya, dan memperpanjang masa pakai komponen. Selain itu, penelitian juga difokuskan pada pengembangan material dan teknologi manufaktur yang baru untuk menciptakan komponen elektronik daya yang lebih kecil, lebih ringan, dan lebih efisien.

Keamanan dan Keandalan: Perlindungan Infrastruktur Kelistrikan

Keamanan dan Keandalan Dalam dunia yang terhubung secara digital, keamanan dan keandalan sistem elektronik daya menjadi kritis. Melalui penelitian dalam keamanan dan keandalan infrastruktur kelistrikan, kita dapat mencapai lingkungan yang lebih aman, melindungi data sensitif, dan menjaga ketersediaan pasokan energi yang tak terputus.

Kesimpulan

Penelitian dalam bidang keamanan dan keandalan sistem elektronik daya bertujuan untuk mengidentifikasi dan mengatasi potensi kerentanan dan risiko yang terkait dengan infrastruktur kelistrikan. Ini melibatkan pengembangan metode deteksi dan perlindungan terhadap serangan siber, sistem keamanan jaringan, dan pengendalian akses yang aman. Selain itu, penelitian juga berfokus pada pengembangan teknik yang dapat memprediksi dan mencegah kegagalan peralatan serta mengoptimalkan keandalan sistem elektronik daya secara keseluruhan.

Melalui penelitian yang terus-menerus dalam bidang elektronik daya, diharapkan bahwa akan terjadi inovasi dan kemajuan yang signifikan dalam efisiensi energi, keberlanjutan, dan keandalan sistem kelistrikan. Penemuan dan pengembangan baru dalam teknologi elektronik daya akan memberikan kontribusi penting dalam memenuhi kebutuhan energi global yang semakin meningkat dan membawa kita menuju masa depan yang lebih hijau dan berkelanjutan.


Apa itu Elektronika Daya?

Apa itu Elektronika Daya
Definisi

Peningkatan investasi dalam elektrifikasi lingkungan yang lebih bersih telah meningkatkan permintaan listrik dalam berbagai cara. Elektronika daya adalah cabang teknik elektro yang berhubungan dengan tegangan dan arus tinggi untuk menghasilkan daya yang sesuai untuk kebutuhan yang berbeda. Selain dari definisinya yang unik, tahukah kalian bahwa hampir setengah daya elektrik di dunia ini di supply ke tempat bermain judi di agen casino yang dimiliki oleh beberapa anak perusahaan dari berbagai bidang. Dari elektronik rumah tangga hingga peralatan luar angkasa Area ini membutuhkan daya listrik yang stabil dan andal dengan fitur yang diinginkan. Catu daya dalam satu bentuk diproses oleh sakelar semikonduktor daya dan mekanisme kontrol dalam bentuk lain. dengan memasok daya yang diatur dan diatur Meskipun catu daya chip adalah penggunaan umum dalam elektronika daya dengan kepadatan energi Keandalan dan efisiensi adalah yang terpenting. Kontrol motor juga sedang dipersiapkan untuk pembangkit listrik dari sistem transportasi. Kontrol dan kinerja yang tepat adalah fitur utama aplikasi kontrol daya. Oleh karena itu, studi elektronika daya bersifat multidisiplin dan mencakup fisika semikonduktor, motor listrik, aktuator mekanik. Peralatan elektromagnetik, sistem kontrol, dll.

Dalam produksi listrik, terutama energi terbarukan Listrik yang dihasilkan harus diproses untuk memenuhi kebutuhan tegangan AC dari jaringan listrik, misalnya sel surya menghasilkan DC. dimana daya keluaran akan bervariasi sesuai dengan tegangan operasi dan radiasi matahari yang masuk. Penting untuk menggunakan daya maksimum pada keluaran sel dan mentransfernya ke jaringan seefisien mungkin. Oleh karena itu, antarmuka yang menghubungkan sel fotovoltaik ke grid harus menyediakan arus grid yang memenuhi persyaratan grid dan menggunakan daya input untuk menggunakan fotovoltaik pada output maksimum. untuk meminimalkan kerugian dalam pembangkit listrik Hal ini dimungkinkan dengan menggunakan perangkat semikonduktor daya dengan mekanisme kontrol canggih yang memantau parameter output dan input serta sakelar kontrol.

Kemajuan dalam perangkat semikonduktor membuka jalan bagi perangkat baru seperti silikon karbida. Gallium Nitrida Field Effect Transistor (FET) dan Dioda Daya Perangkat ini secara unik sangat baik dalam hal celah pita lebar. yang memungkinkannya bekerja dengan tegangan tinggi manajemen panas dan efisiensi Hal ini telah menyebabkan meluasnya penggunaan elektronika daya, bahkan di area yang peka terhadap suara. Ini menggantikan catu daya linier lossy dan pengatur tegangan. Keuntungan utama dari perangkat ini adalah mereka dapat menahan tegangan tinggi dibandingkan dengan perangkat silikon. Oleh karena itu, sistem dapat dirancang dengan karakteristik tegangan tinggi. Ini mengurangi arus dan meningkatkan efisiensi untuk catu daya yang sama.Selain itu, penggunaan perangkat dengan frekuensi switching yang tinggi mengurangi ukuran komponen pasif. buat sistemnya kompak Kemampuan untuk menangani suhu yang lebih tinggi menyederhanakan desain sistem pendingin.

Cara kerja elektronik
Cara kerja elektronik

  • menghasilkan listrik
  • infeksi
  • Sumber Daya listrik
  • manajemen daya

Di semua aplikasi ini Tegangan dan arus suplai divariasikan menggunakan perangkat semikonduktor daya untuk mencapai hasil yang diinginkan. Perangkat semikonduktor dasar seperti dioda, FET, dan transistor sambungan bipolar (BJT) disesuaikan untuk menahan tegangan dan arus tinggi (SCR) Power Diode transistor efek medan semikonduktor oksida logam daya (MOSFET), BJT daya, transistor gerbang bipolar terisolasi (IGBT), thyristor gerbang tertutup (GTO), dan sebagainya. Frekuensi switching, efisiensi, dan karakteristik persyaratan input dan output, misalnya, adalah kilowatt daya yang diproses dalam powertrain kendaraan listrik. dalam penggunaan seperti itu Power MOSFET umumnya digunakan, yang dapat menahan tegangan tinggi dan frekuensi switching yang tinggi. Penyearah terkendali silikon (SCR) digunakan dalam transmisi daya. yang memproses daya pada urutan beberapa megawatt

Diagram blok elektronika daya yang khas ditunjukkan pada gambar di bawah ini.

Komponen kunci dari sistem elektronika daya adalah konverter daya switching. Konverter daya terdiri dari perangkat semikonduktor daya yang menyala dan mati pada frekuensi tinggi. Fungsi ini mengalihkan tegangan dan arus melalui perangkat yang berbeda. dan menghasilkan daya kontrol pada output. Hal ini juga memungkinkan untuk mengontrol daya dari output. Perangkat yang ideal mengubah tegangan dan arus secara instan. dan memberikan resistansi nol saat dihidupkan dan resistensi tak terbatas saat ditutup Namun di dunia nyata, tidak ada perangkat yang bisa langsung diganti. Switching converter melibatkan dua jenis rugi-rugi daya.

Baca juga : Pentingnya Teknik Tenaga dan Elektronika Daya


Pentingnya Teknik Tenaga dan Elektronika Daya

Pentingnya Teknik Tenaga dan Elektronika Daya

Rekayasa tenaga dan elektronika, meskipun mungkin tidak sepopuler bentuk rekayasa lainnya, sangat penting bagi dunia di sekitar kita dan telah lama menjadi penting.

Elektronika daya adalah bagian penting dari banyak perangkat dan sistem dalam satu atau lebih fasenya. Elektronika daya mengubah energi listrik dari satu jenis ke jenis lain dengan karakteristik yang berbeda dan digunakan untuk menggerakkan perangkat apa pun yang memerlukan input daya listrik selain yang dipasok oleh sumber daya utama.

Namun, itu hanya penjelasan teknis dari teknik elektronika daya. Karena COVID-19 terus menyebar ke seluruh dunia, kami melihat betapa pentingnya insinyur dan teknologi yang mereka rekayasa. Dari pembangkit listrik hingga teknologi transportasi dan komunikasi hingga peralatan dapur rata-rata, elektronika daya, dan para insinyur di balik perangkat elektronik ini ada di mana-mana.

Seri artikel singkat ini akan mengeksplorasi banyak cara elektronika daya meresapi kehidupan kita sehari-hari — apakah Anda seorang insinyur listrik yang bekerja untuk mengembangkan teknologi terbaru di industri atau siapa saja yang mendapat manfaat dari teknologi tenaga modern.

Mengapa Elektronika Daya?

Elektronika daya adalah cabang elektronika yang berhubungan dengan penerapan perangkat elektronik dan komponen terkait untuk konversi, kontrol, dan pengkondisian daya listrik. Konverter elektronika daya memodifikasi karakteristik utama daya listrik: bentuk dasar AC atau DC, tegangan, arus, frekuensi, dan faktor daya.

Kontrol daya listrik memungkinkan pengaturan parameter nonlistrik seperti intensitas pencahayaan, kecepatan motor, laju proses elektrokimia, atau suhu oven.

Sistem elektronika daya digunakan dalam berbagai aplikasi dan berpotensi berdampak pada area industri dan aktivitas sosial global. Dari ponsel hingga alat pacu jantung, dan utilitas hingga mobil, elektronika daya, dan teknik di balik elektronik tersebut sangat berpengaruh dalam kehidupan sehari-hari masyarakat.

Pertumbuhan kebutuhan energi listrik berbanding lurus dengan peningkatan kualitas hidup. Di abad ke-21, teknologi yang terkait dengan manipulasi dan konservasi sumber energi sangat penting untuk memastikan standar hidup yang nyaman. Elektronika daya memiliki peran penting dalam efisiensi penggunaan energi listrik dan pengendalian lingkungan.

Rekayasa tenaga mencapai sektor-sektor seperti perumahan, industri, komersial, medis, komunikasi, transportasi, kedirgantaraan, dan militer.

Beberapa aplikasi elektronika daya adalah pengkondisian daya, proses elektrokimia, kontrol suhu dan pencahayaan, konversi daya terbarukan, aplikasi medis, komunikasi, industri komputer, jaringan komputer, jaringan tenaga listrik, militer, dan transportasi.

Sejarah Elektronika Daya

Elektronika daya muncul pada awal 1900-an, dengan diperkenalkannya penyearah busur merkuri (Peter Cooper Hewit pada tahun 1902). Kemudian secara bertahap muncul triode (Lee De Forest, 1906), penyearah tabung vakum tinggi grid yang dikendalikan (Lee De Forest 1906), penyearah tangki logam (Errol Shand, 1925), ignitron (Joseph Slepian, 1930-an). Semua diterapkan pada kontrol energi hingga 1950-an.

Pada tahun 1948 revolusi elektronik pertama dimulai dengan penemuan transistor silikon di Bell Laboratories.

Perangkat lain yang muncul adalah thyristor, nama yang diberikan untuk setiap saklar semikonduktor yang operasi bistablenya bergantung pada umpan balik regeneratif p-n-p-n.

Penyearah terkontrol silikon (SCR) adalah yang paling terkenal dari semua perangkat thyristor dan pertama kali diperkenalkan pada tahun 1954 oleh Bell Laboratories. Transistor unijunction (UJT) pertama kali diperkenalkan pada tahun 1948 tetapi dikomersialkan pada tahun 1952.

Revolusi elektronik kedua terjadi pada tahun 1958 dengan pengembangan thyristor komersial oleh General Electric Company. Ini mengantarkan era baru elektronika daya.

Perangkat semikonduktor daya yang diperkenalkan hingga saat ini adalah transistor sambungan bipolar (BJT), transistor efek medan oksida logam (MOSFET), sakelar pemutus gerbang (GTO), MOS Controlled Thyristor (MCT), dan perangkat hibrida seperti gerbang terisolasi. transistor sambungan bipolar (IGBT).

Aplikasi Semikonduktor

Aplikasi Semikonduktor
Semikonduktor cq9 seringkali merupakan aspek terpenting dari teknologi apa pun — komponen penting dari perangkat elektronik apa pun.

Beberapa aplikasi umum semikonduktor yang digunakan saat ini dalam industri elektronika daya adalah:

Triacs: kontrol fase adalah aplikasi awal, juga, sebagai saklar statis.
Penyearah yang dikontrol silikon (SCR): kontrol relai, sirkuit waktu tunda, catu daya yang diatur, sakelar statis, kontrol motor, helikopter, inverter, konverter siklo, regulator untuk pengisi daya baterai, sirkuit perlindungan, kontrol pencahayaan, kontrol pemanas, dan kontrol fase.

Baca juga : 5 Tren Industri Surya Tahun 2022


5 Tren Industri Surya Tahun 2022

5 Tren Industri Surya Tahun 2022

Tampaknya tidak ada akhir dari peristiwa global yang berdampak negatif pada semua industri selama beberapa tahun terakhir menurut blog wmcasino. Namun, energi terbarukan dan tenaga surya telah menjadi industri unik yang telah mengalami pertumbuhan luar biasa terlepas dari apa yang terjadi di seluruh dunia. Bahkan, dari 2015 hingga 2020, pangsa pasar solar tumbuh pada CAGR 15%. Tapi bagaimana dengan tenaga surya pada 2022? Mengapa panel surya bernilai sekarang?

1. Pengantar AI

Bidang yang telah mengadopsi AI telah mendapat giliran dan menuai hasil. 2022 tampaknya menjadi tahun ketika tenaga surya mengambil gilirannya. Industri surya telah sangat merevolusi dengan memasukkan AI ke dalam produknya. Saat ini digunakan untuk meramalkan permintaan energi, seperti prakiraan cuaca, dan untuk mengelola distribusi energi untuk memastikan bahwa pemilik rumah selalu memiliki akses ke listrik. Mengaktifkan AI untuk mengelola distribusi energi seefisien mungkin mengubah permainan. Ini karena, tergantung pada desain sistem, energi tidak dapat disimpan untuk jangka waktu yang lama.

5 Tren Industri Surya

2. Mengurangi Biaya Dan Meningkatkan Ekonomi

Tidak seperti smartphone dan laptop, yang harganya meningkat dari tahun ke tahun, biaya teknologi surya terus menurun. Dapat dikatakan bahwa penurunan biaya yang stabil disebabkan oleh adopsi massal teknologi oleh bisnis dan pemilik rumah. Tetapi juga membantu jika Departemen Energi berencana untuk memotong biaya solar lebih dari 60% pada tahun 2030. Dukungan besar dari industri surya sudah karena jatuhnya biaya solar dan peningkatan skalabilitas setiap tahun. Bukan hanya inovasi panel surya yang membuat manufaktur lebih murah, tetapi juga sistem tenaga surya terkonsentrasi.

3. Peningkatan Daya Tahan Panel Surya

Pada hari-hari awal sistem energi terbarukan, teknologi ini tidak dapat diandalkan dan tidak efisien. Ini dikombinasikan dengan biaya awal yang besar untuk memasang sistem tenaga surya tidak layak untuk dilihat banyak. Namun, semua jenis sistem tenaga surya, dari sistem yang terhubung ke jaringan hingga sistem di luar jaringan, telah meningkatkan daya tahan dan efisiensi secara signifikan. Faktanya, karena adopsi massal teknologi surya, perusahaan terus mengembangkan fitur inovatif dan meningkatkan daya tahan secara keseluruhan, sehingga orang dapat menggunakan sistem tanpa khawatir. Sementara perbaikan akan membantu mengurangi biaya pemeliharaan untuk rumah tangga, bisnis besar dapat merasakan manfaat nyata.

Tren Industri Surya

4. Meningkatnya Permintaan Dan Tumbuhnya Pekerjaan Tenaga Surya

Dengan inovasi pada tata surya mandiri dan semua jenis kit pengikat grid panel surya, ada permintaan yang meningkat untuk mengintegrasikan tenaga surya ke dalam produk lain. Saat ini, konsumen dapat memperoleh manfaat dari penghematan biaya penggunaan pencahayaan luar ruangan bertenaga surya untuk dekorasi umum dan menyalakan layar besar di rumah mereka. Selain itu, industri telah melihat minat pasar pada pengisi daya surya untuk kendaraan listrik dan surya karena permintaan untuk produk surya meningkat. Pada tahun 2022, kami berencana untuk memperkenalkan berbagai produk solar untuk memenuhi kebutuhan konsumen. Tentu saja, dengan peningkatan permintaan yang signifikan ini, begitu pula dengan permintaan tenaga surya profesional. Ketika sistem tenaga surya mulai diintegrasikan ke dalam produk selain dari instalasi skala besar, industri akan melihat permintaan untuk para profesional dengan pengetahuan solar niche. Segera akan ada lebih banyak instalasi daripada profesional yang tahu cara memasang, memelihara, dan memperbaiki.

5. Manfaatkan Kredit Pajak Dan Masalah Perubahan Iklim

Pemerintah federal dan lokal di seluruh dunia semakin sadar akan risiko metode produksi energi saat ini. Jika ada sesuatu yang telah ditunjukkan oleh sains kepada dunia, itu adalah bahwa dunia dengan cepat menjadi tidak dapat dihuni. Hal ini telah menyebabkan inisiatif global untuk mengurangi emisi karbon dengan segala cara yang diperlukan. Salah satu caranya adalah dengan memberikan insentif keuangan kepada orang dan bisnis untuk melakukan transisi. Salah satu insentif paling terkenal di Amerika Serikat adalah kredit pajak matahari federal atau kredit pajak investasi (ITC). Namun, ini adalah kredit pajak terbatas waktu. Ketika awalnya diusulkan, orang yang memasang sistem tenaga surya dapat mengklaim hingga 30% dari biaya pajak pendapatan federal. Namun, jumlah itu telah turun menjadi 22% pada tahun 2023 dan tidak akan tersedia pada tahun 2024. Ini adalah pengecualian kecuali Kongres memutuskan untuk memperbarui RUU sebelum berakhir.

Segera setelah konsumen AS menyadari bahwa kredit pajak surya federal mereka akan berakhir pada tahun 2024, akan ada peningkatan yang stabil dalam konsumen yang mendaftar ke F.O.M.O untuk memanfaatkan semua insentif surya di tingkat federal, negara bagian, dan lokal. Pada tahun 2022, kita akan melihat lebih banyak bisnis beralih ke energi terbarukan karena tekanan konsumen. Apa yang dimulai sebagai peralihan dari kantong plastik ke kantong kertas telah berubah menjadi permintaan konsumen untuk lebih banyak inisiatif hijau dari perusahaan yang mereka dukung.

Baca Juga : 7 Alasan Mengapa Anda Harus Menggunakan Tenaga Surya Maxbet

Tenaga Surya pada tahun 2022

Industri surya dan energi terbarukan telah membuat langkah besar dalam dekade terakhir. 2022 terus menjadi industri yang kuat dan tidak menunjukkan tanda-tanda melambat dalam waktu dekat. Faktanya, dunia akan segera terlihat seperti pemandangan ramah lingkungan yang Anda bayangkan hanya akan Anda lihat di novel fiksi ilmiah tingkat tinggi. Either way, terlepas dari motifnya, jelas bahwa semakin sulit untuk mengatakan tidak pada solar.


7 Alasan Mengapa Anda Harus Menggunakan Tenaga Surya Maxbet

7 Alasan Mengapa Anda Harus Menggunakan Tenaga Surya

Manfaatkan Manfaat Tenaga Surya

Orang sering bertanya pada diri sendiri ‘Mengapa energi matahari Maxbet bagus?’ dan, sebagai akibatnya, gagal menyadari pentingnya teknologi surya. Tenaga surya ternyata telah menjadi tren dalam energi terbarukan. Pemilik rumah di seluruh Inggris memasang panel surya di atap mereka, mengelolanya untuk menuai semua keuntungan energi surya.

Terlepas dari keuntungan finansial yang jelas, ada alasan terkait lainnya mengapa Anda harus beralih menggunakan tenaga surya daripada bahan bakar fosil.

Apa alasan lain yang harus Anda pertimbangkan saat menggunakan solar? Berikut tujuh alasan kuatnya.

1. Tenaga Surya Baik untuk Lingkungan

Fakta yang paling umum diketahui tentang energi matahari adalah bahwa ia merupakan sumber energi yang bersih dan hijau. Tenaga surya adalah cara yang bagus untuk mengurangi jejak karbon Anda. Tidak ada apapun tentang tenaga surya yang mencemari alam. Tenaga surya tidak melepaskan gas rumah kaca, dan selain membutuhkan sumber air bersih untuk berfungsi, tenaga surya sama sekali tidak menggunakan sumber daya lain. Oleh karena itu, aman dan ramah lingkungan. Namun, orang masih ragu mengapa energi matahari bagus.

Tenaga surya mandiri dan memasang panel surya di atap Anda adalah jalan yang aman dan mudah untuk berkontribusi pada masa depan yang berkelanjutan. Memulai dari rumah Anda adalah cara yang bagus untuk menunjukkan bahwa Anda peduli terhadap lingkungan.

2. Listrik Tenaga Surya Membuat Rumah Anda Mati Jaringan

Penurunan biaya panel surya menjadi contoh yang bagus mengapa harus ada peningkatan penggunaan energi surya. Listrik tradisional sangat bergantung pada bahan bakar fosil seperti batu bara dan gas alam. Mereka tidak hanya buruk bagi lingkungan, tetapi juga sumber daya yang terbatas. Ini berarti pasar yang bergejolak, di mana harga energi berubah sepanjang hari.

Listrik tenaga surya meningkatkan kemandirian listrik Anda! Dengan berinvestasi dalam tata surya 4kW, yang merupakan ukuran domestik yang paling umum, Anda dapat dengan mudah melindungi diri dari kenaikan harga utilitas yang tidak terduga, dan menikmati listrik murah sepanjang hari – matahari tidak akan pernah menaikkan tarifnya dan memberi Anda keamanan energi .

Setelah Anda memiliki panel surya di atap Anda, secara teknis Anda telah mencapai status mandiri energi. Sistem penyimpanan baterai surya juga dapat membantu menyimpan listrik untuk malam hari dan hari hujan.

3. Tenaga Surya Dapat Menggunakan Lahan yang Kurang Dimanfaatkan

Anda mungkin terus bertanya-tanya mengapa tenaga surya. Dengan meningkatnya kebutuhan energi matahari, itu menjadi mudah diakses oleh sebagian besar dari kita. Di berbagai negara, ada tanah luas yang jauh dari kota besar atau ibu kota, dan sama sekali tidak digunakan untuk apa pun.

Dengan tenaga surya, kita benar-benar dapat memanfaatkan lahan dan selanjutnya menghasilkan nilai yang besar; energi surya menyediakan sumber tenaga bagi semua orang. Dengan cara ini, kita tidak perlu menggunakan tanah dengan harga tinggi yang mungkin lebih cocok untuk aplikasi lain.

Anda mungkin pernah mendengar tentang peternakan surya – panel yang digunakan untuk memanen energi matahari dalam jumlah besar. Ini menyoroti dengan sempurna bagaimana tenaga surya memanfaatkan lahan yang kurang dimanfaatkan. Misalnya, ladang tenaga surya seluas 45 hektar baru-baru ini dibangun di Inggris, dan mampu memberi daya pada 2.500 rumah.

4. Tenaga Surya Menyebabkan Lebih Sedikit Kehilangan Listrik

Listrik perlu diangkut dari pembangkit listrik besar ke konsumen akhir melalui jaringan yang luas. Transmisi jarak jauh sama dengan kehilangan daya. Pernah bertanya-tanya untuk apa panel surya digunakan? Mereka ada di atap Anda untuk mendapatkan energi dari matahari. Tenaga surya atap sangat membantu dalam meningkatkan efisiensi listrik, mengingat jaraknya yang dekat. Energi Anda menjadi domestik dan sebagai hasilnya Anda mengendalikan tagihan dan penggunaan energi Anda sendiri. Selain itu, sistem tenaga surya tahan lama, sehingga kemungkinan gangguan layanan berkurang.

5. Tenaga Surya Meningkatkan Keamanan Jaringan

5. Tenaga Surya Meningkatkan Keamanan Jaringan
Ketika banyak dari kita beralih ke tenaga surya, kita cenderung tidak mengalami pemadaman atau pemadaman listrik. Setiap rumah tangga di Inggris yang memiliki sel surya terpasang, berfungsi sebagai pembangkit listrik kecil. Ini, pada gilirannya, memberi kita keamanan jaringan listrik yang lebih besar, terutama dalam hal bencana alam atau yang disebabkan manusia.

Dengan bantuan hibah panel surya, Anda juga dapat dibayar untuk mengekspor listrik kembali ke jaringan.

6. Tenaga Surya Menciptakan Lapangan Kerja dan Pertumbuhan Ekonomi di Inggris

Perekonomian nasional kita bisa dibantu oleh tenaga surya. Semakin banyak orang yang memilih solar, semakin banyak kebutuhan bagi perusahaan untuk memasang panel surya. Ini menciptakan lapangan kerja tambahan bagi pekerja terampil, dan akibatnya membuat ekonomi tumbuh.

Pada tahun 2015, misalnya, Inggris menjadi perusahaan tenaga surya terbesar kedua, dengan 35.000 orang, dan pasar pemasangan panel surya fotovoltaik (PV) terbesar di benua itu.

7. Tenaga Surya Adalah Sumber Energi Gratis

Matahari memberi kita lebih banyak energi daripada yang bisa kita gunakan, dan tidak ada yang bisa memonopoli sinar matahari. Sistem tenaga surya Anda akan mulai menghemat ekonomi dan uang sejak dinyalakan, namun, keuntungan tenaga surya paling terlihat dalam jangka panjang.

Baca juga : 3 Prediksi Teknologi Teratas Penggunaan Elektronika Daya Di Tahun 2022